\qquad
\qquad

No.	1	2	3	4	5	6	Total
score							

1. (36 points) Evaluate each of the following integrals (You must show all of your work to receive full credit. Here, no calculators allowed).
a. $\int \frac{x}{\sqrt{x+1}} d x$
b. $\int(3 x+1) \cos (2 x) d x$
c. $\int_{0}^{\frac{\pi}{2}} \sin ^{4} x \cos x d x$
d. $\int \frac{e^{2 x}}{1+e^{4 x}} d x$
2. (10 pts) Find (but don't evaluate) an integral whose value gives the arc-length of the curve $f(x)=1+\ln x$ on the interval $[1,2]$.
3. (12 pts) The following table gives some values of a function $y=f(x)$ on the interval $[0,4]$:

x	0	1	2	3	4
$\mathrm{f}(\mathrm{x})$	-1	2	1	-2	0

To approximate the value of the integral $\int_{0}^{4} f(x) d x$ compute the following sums (Please pay attention to the notation and how many subdivisions in each part. Show details by writing the actual sum and not just an answer):
a. $\operatorname{Left}(4)$
b. $\operatorname{Mid}(2)$
c. $\operatorname{Trap}(4)$
4. (12 pts) Find (but don't evaluate) an integral whose value gives the volume of the solid obtained by revolving the bounded region between the curves $y=\sqrt{x}$ and $y=x^{2}$ in the first quadrant about the x-axis.
5. (20 points) Determine whether the following improper integrals are convergent or divergent. Show all details.
a. $\int_{1}^{5} \frac{1}{\sqrt{x-1}} d x$
b. $\int_{2}^{\infty} \frac{1}{x \ln x} d x$
6. (10 points) By using a comparison theorem determine whether the following integral is convergent or divergent: $\int_{1}^{\infty} \frac{1}{x^{1.01}+x+3} d x$.

